如果德国想在2050年前实现将可再生能源发电比例提高至80%的目标,它就必须借助系统性的解决方案。一个以西门子为核心的研发网络正在开发的微电网或许可以提供一个可能性。如今,西门子从这个项目中汲取的经验将有望转化为经济效益。为此,公司还出资成立了egrid合资企业。
德国正全力推进向可再生能源经济的转型。目前,可再生能源占德国能源构成的比重已达25%左右。然而,如果德国想实现在2050年前将可再生能源发电比例提高至80%的能源转型目标,它将需要向电网输送更多利用可再生能源生产的电力。
时至今日,德国可再生能源发电设施的装机容量已接近当前电网所能承受的极限。基于此,**需要建设智能电网,确保即使可再生能源的发电量随天气而波动,分布式发电系统也能持续不断地为电力用户提供充足的电力。与现有电网不同的是,智能电网能在配电的同时平衡发电与用电,且其调控范围还将直达较终用电环节。
为保证这种方法的有效性,在2011年到2013年间,西门子**的一个研究小组在德国南部Allg?u地区的Wildpoldsried,建造了一个智能电网并进行了测试。这一项目是德国IRENE(可再生能源与电动交通集成)计划的一部分。Michael Metzger博士是西门子在IRENE研究网络中的项目经理。他解释说,Wildpoldsried是这个计划的理想启动地点。他表示:“早在2010年,Wildpoldsried利用风电、太阳能发电和生物质发电设施生产的电能就已达到其用电量的两倍左右了。换句话说,它已经展示了一些我们希望未来在整个德国能够看到的图景。”
IRENE项目已于2013年底圆满结束。事实证明,这个智能电网能够灵活地平衡社区内波动的电能供应和用电需求以维持电网稳定。要实现这一点,*们借助了许多先进的技术和产品,这其中就有两个可控的配电变压器和一个蓄电池组装置。社区的智能电网还配备了复杂的测量系统、先进的通信基础设施以及分布式可再生能源发电系统(如光伏和沼气发电单元)。
在项目中,科研合作伙伴与Wildpoldsried的居民都是受益者。有了智能电网,如今,Wildpoldsried的发电量已达到其居民用电量的五倍以上,大大**过了高峰时段的需求量。
这样一来,IRENE项目的合作伙伴便能创造出理想的技术条件以开展后续研究计划,并朝着实现德国2050年能源转型的目标逐步迈进。2014年7月,预计为期三年的IREN2计划正式启动。
德国亚琛工业大学的Torsten Sowa在谈到IREN2项目的背景时表示:“如果自2050年起,五分之四的电能将来自可再生能源而非常规电厂,那么就当前的技术水平而言,我们仍面临着一个重大挑战。因为当前使用的可再生能源的能源系统尚不能提供所谓的系统服务,例如提供无功功率以维持叠加电网的电压。换句话说,要想实现2050年的目标,我们需要新型解决方案。”
IREN2项目提供了科学研究以及实际测试自主独立网络和拓扑电厂的优化运行的机会。研究人员对新型网络结构及其管理进行研究,以期从技术和经济上找到优化包含分布式发电设施和附加组件的电力系统的方法。
将研究成果转化为经济效益
现在,西门子*计划与Allg?uer überlandwerk合作将研究成果转化为经济效益。为此,Allg?uer überlandwerk成立了egrid公司。2017年5月,西门子获得了egrid公司49%的股份。
这家合资企业向配电网运营商提供关于智能电网如何在可再生能源占比很高的情况下进行扩展的相关建议。在谈到应避免不必要的电网扩展时,Metzger表示:“我们可以为项目加入更多‘智能’,而非仅仅增添砖瓦。”这一点的实现要归功于西门子*从IRENE计划中归纳出来的优化配电网规划标准。
公用设施、市**和工业企业是egrid公司的首批客户之一。西门子能源管理集团电力技术国际业务部负责人Michael Schneider解释道:“我们面向分布式供电和储能的解决方案是源于实际的实用解决方案,这将让我们的客户受益匪浅。通过这种方式,我们正与Allg?uer überlandwerk一起积极支持新的能源政策。”现在,egrid不仅是一家脱胎于研究项目的合资企业,它还带来了经济效益——egrid将助力新的能源政策的落实。
西门子启用**较大规模的电解制氢设施
西门子与合作伙伴正式启用**较大规模的电解制氢设施。这套设施的核心组件是被称为“Mainz Energy Farm”的高压PEM电解槽。这套电解槽可在短短数秒钟内达到较高6,000千瓦全产能,因而非常适于调节可再生能源发电系统发电量的快速波动。
PEM的意思是高分子电解质膜,其过程是用水和电制备氢气。这套设施是一个为期两年的研究项目的一部分,其合作伙伴包括西门子、美茵大学、林德集团和德国美因茨市**。
美因茨这套设施的产能足以应对电网瓶颈和来自小型风电场增发电量。它利用主要来自附近风电场的电能制备氢气。利用可再生能源制备的氢气既可以作为蓄能介质送入燃气管网,亦可用于工业生产,或者供给燃料电池汽车。
灵活的设施
西门子为这套设施提供核心组件:配备Simatic控制装置的电解系统。此外,西门子还提供配备GEAFOL变压器的中压站,为Sinamic转换器的低压和高压电源装置及气体绝缘中压配电盘(20kV)供电。整个设施控制系统也是以Simatic为基础。这套设施由林德集团维护,林德集团还负责净化、压缩、储存和罐装氢气。美茵大学提供科学监督服务。这个项目分析所有组件的相互作用,譬如,电解槽与压缩机之间的相互作用,或者并入电网和燃气管网。
不同于传统碱性电解技术,这种电解槽用质子交换膜(PEM)将两个分别分解产生氧和氢的电极隔离开来。这样一来,这种新型PEM电解槽可在几毫秒内作出灵活响应,并可短时运行于1.5倍于其额定功率的功率水平下,这意味着,即使发电量突然大增,它都可轻松储存过剩的电能。
**的能源
氢的多用途是一大优势。它可重新转化为电能,可用于驱动汽车,或者进行“甲烷化”——氢与二氧化碳作用形成天然气主要成分甲烷。氢气中的能量因此可储存在现有的天然气分配基础设施中,用于采暖或驱动天然气汽车。
氢不仅是**的能源,而且是化工行业重要的原材料。但目前氢几乎完全来自天然气。然而,一种**替代技术能使利用可再生能源剩余电力生产氢气,且其成本相较利用天然气生产氢气也颇具竞争力。那时,氢与温室气体二氧化碳将能组成一个真正的“梦之队”。其基本理念是,作为化工行业重要中间产品的一氧化碳(CO)过去取自矿物能源,现在可取而代之利用二氧化碳和氢气制备,并且仅产生水作为副产品。这种反应需要利用拜耳正与科技界合作伙伴联手开发的特殊催化剂。利用另一种催化剂,还可生产甲酸,这也是一种重要的基本**化工原料。