激光熔覆是指:通过同步或预置材料的方式,将外部材料添加至基体经激光辐照后形成的熔池中,并使二者共同快速凝固形成包覆层的工艺方法。
激光熔覆特点:熔覆层稀释度低但结合力强,与基体呈冶金结合,可显著改善基体材料表面的耐磨、耐蚀、耐热、抗氧化或电气特性,从而达到表面改性或修复的目的,满足材料表面特定性能要求的同时可节约大量的材料成本。与堆焊、喷涂、电镀和气相沉积相比,激光熔覆具有稀释度小、组织致密、涂层与基体结合好、适合熔覆材料多、粒度及含量变化大等特点,因此激光熔覆技术应用前景十分广阔。
从当前激光熔覆的应用情况来看,其主要应用于三个方面:
一,对材料的表面改性,如燃汽轮机叶片,轧辊,齿轮等
二,对产品的表面修复,如转子,模具等。有关资料表明,修复后的部件强度可达到原强度的90%以上,其修复费用不到重置价格的1/5,更重要的是缩短了维修时间,解决了大型企业重大成套设备连续可靠运行所必须解决的转动部件快速抢修难题。另外,对关键部件表面通过激光熔覆超耐磨抗蚀合金,可以在零部件表面不变形的情况下大大提高零部件的使用寿命;对模具表面进行激光熔覆处理,不仅提高模具强度,还可以降低2/3的制造成本,缩短4/5的制造周期。
三,快速原型制造。利用金属粉末的逐层烧结叠加,快速制造出模型。
激光功率
激光功率越大,融化的熔覆金属量越多,产生气孔的概率越大。随着激光功率增加,熔覆层深度增加,周围的液体金属剧烈波动,动态凝固结晶,使气孔数量逐渐减少甚至得以消除,裂纹也逐渐减少。当熔覆层深度达到极限深度后,随着功率提高,基体表面温度升高,变形和开裂现象加剧,激光功率过小,仅表面涂层融化,基体未熔,此时熔覆层表面出现局部起球、空洞等,达不到表面熔覆目的。
光斑直径
激光束一般为圆形。熔覆层宽度主要取决于激光束的光斑直径,光斑直径增加,熔覆层变宽。光斑尺寸不同会引起熔覆层表面能量分布变化,所获得的熔覆层形貌和组织性能有较大差别。一般来说,在小尺寸光斑下,熔覆层质量较好,随着光斑尺寸增大,熔覆层质量下降。但光斑直径过小,不利于获得大面积的熔覆层。