深圳市中杰光电科技有限公司
现代社会中,WiFi是我们身边随处可见的设备,根据80.211b/g/n协议,WiFi的工作频率范围是2.4GHz~2.48GHz。自从赫兹验证了电磁波的存在以来,无线发射机的工作频率约为50兆赫,发展到现在工作频段到了千兆赫。随着无线通信数据量的不断增加,需要用新的通信技术来满足更高速的数据传输。因此,哈佛的研究团队给出了一个基于半导体激光频率梳的小型射频发射机的概念证明。
然而,由于3 μm激光晶体的增益系数与热导率较低,在高功率泵浦条件下会出现严重的热透镜与热退偏效应,同时由于缺乏高透过率、高损伤阈值的声光调Q开关,从而难以获得高重复频率、高峰值功率的调Q激光输出。
在锑化物**阱大功率激光器方面,研究团队创新采用数字合金法生长波导层等关键技术,研制成功2μm波段的InGaSb/AlGaAsSb应变**阱大功率激光器,其单管器件的室温连续输出功率达到1.62瓦、巴条(线阵)激光器组件的室温连续输出功率16瓦,综合性能达到国际一流水平并突破国外高功率半导体激光器出口限制规定的性能条款。
GaSb基InGaAsSb晶格匹配异质结**阱的能带带隙可调范围覆盖了1.8μm~4.0μm的短波红外区域,与该波段的其它激光材料体系相比其在研制电直接驱动下高光电效率的激光器方面具有*特的优势。
对于使用该设备探索基础**物理学有着极大兴趣的Mishkat Bhattacharya教授表示:“我们非常高兴能看到这种设备的各种新用途,特别是对于传感和信息处理而言,因为光学激光器具备众多应用,并且还在不断发展。”
罗彻斯特理工学院物理学副教授、理论**光学研究员米什卡特·巴塔查里亚(Mishkat Bhattacharya)介绍,通过检测纳米粒子散射的光来测量纳米粒子的位置,并将这些信息反馈到镊子光束中,这样我们就可以创造出类似激光的情况。机械振动变得很强烈,并且完全同步,就像从光学激光器发出的电磁波一样。
据了解,3μm波段位于水的吸收峰与红外光谱指纹区内,它在生物医学、大气遥感、光电对抗等领域有着广阔的应用前景。高峰值功率3μm调Q激光器还可以作为光参量振荡器(OPO)的泵浦源,高效率地产生可调谐中红外参量激光,将相干光源拓展到中红外波段。高重复频率、高峰值功率中红外激光不仅可以提高生物消融速率,而且还可以增强远程大气环境探测灵敏度和距离。因此,发展高重复频率、高峰值功率调Q激光技术已成为该领域重要发展方向。
据外媒报道,来自罗彻斯特理工学院(RIT)和罗彻斯特大学的研究人员,通过诺贝尔奖获得者Arthur Ashkin发明的激光镊技术,开发出了一种新型声子激光器。
随着锑化物多元素复杂低维材料分子束外延技术的不断进步,国际上锑化物半导体相关的材料与光电器件技术创新发展十分迅速。上述锑化物半导体激光器研究成果突破了短波红外激光器技术领域长期卡脖子核心技术,将在危险气体检测、环境监测、医疗与激光加工等诸多**产业发挥重要价值。
中国科学院半导体研究所**晶格国家重点实验室牛智川研究员团队在锑化物半导体单模和大功率**阱激光器研究方面取得重要进展。
-/gbabiff/-