声子是与声波及光镊相关的能量**,它可以孤立地测试**效应的极限,并消除周围环境的物理干扰。研究人员研究了纳米粒子的机械振动,这种粒子可在激光束焦点处的辐射力作用下在重力作用下悬浮。
在这种激光器中,腔内振荡的相干模之间的拍频产生电流,该电流与器件的电极耦合,利用内部振荡电流驱动偶较天线,偶较天线向自由空间辐射。这项研究为电子-光子混合装置提供了新的思路,同时也为光学频率梳用在无线通信与无线基准同步的应用提供新的道路。
中国科学院合肥物质科学研究院医学物理与技术中心医用激光技术研究室研究员江海河课题组在2.79μm调Q激光器方面取得新进展。
在标准光学激光器中,光输出的特性由生产该激光器的材料控制。但是在这种声子激光器中,材料粒子的运动受光学反馈的控制。与此同时,这种声子激光还可以为中尺度声子的相干源提供通路,进而可应用于解决**力学以及精密计量应用中的基本问题。
中国科学院半导体研究所**晶格国家重点实验室牛智川研究员团队在锑化物半导体单模和大功率**阱激光器研究方面取得重要进展。
锑化物半导体**阱激光器研究获得重要进展
针对以上问题,研究人员使用在3μm波段具有相对低的泵浦阈值、较高斜率效率的Er:YSGG激光晶体,采用966 nm半导体激光器(LD)作为泵浦源,使得泵浦光发射带与激光晶体铒离子吸收带具有很好的光谱匹配,提高了泵浦效率,降低激光晶体热效应。通过谐振腔优化设计补偿热透镜效应,使用2.79 μm高损伤阈值的非偏振TeO2声光调Q开关,避免了电光调Q热退偏效应带来的损耗。在重复频率100-300Hz条件下,获得2.79μm高重频调Q激光输出,其中较大激光脉冲能量达到1mJ,较高峰值功率达13.2 kW@76 ns。
对于使用该设备探索基础**物理学有着较大兴趣的Mishkat Bhattacharya教授表示:“我们非常高兴能看到这种设备的各种新用途,特别是对于传感和信息处理而言,因为光学激光器具备众多应用,并且还在不断发展。”
哈佛大学的研究团队**用半导体激光无线传输数据,通过这项技术,人们可能能实现**高速传输的WiFi。这篇研究论文发表于《美国科学院院刊》。
在锑化物**阱大功率激光器方面,研究团队创新采用数字合金法生长波导层等关键技术,研制成功2μm波段的InGaSb/AlGaAsSb应变**阱大功率激光器,其单管器件的室温连续输出功率达到1.62瓦、巴条(线阵)激光器组件的室温连续输出功率16瓦,综合性能达到国际*水平并突破国外高功率半导体激光器出口限制规定的性能条款。